132 research outputs found

    An Android-Based Mechanism for Energy Efficient Localization Depending on Indoor/Outdoor Context

    Get PDF
    Today, there is widespread use of mobile applications that take advantage of a user\u27s location. Popular usages of location information include geotagging on social media websites, driver assistance and navigation, and querying nearby locations of interest. However, the average user may not realize the high energy costs of using location services (namely the GPS) or may not make smart decisions regarding when to enable or disable location services-for example, when indoors. As a result, a mechanism that can make these decisions on the user\u27s behalf can significantly improve a smartphone\u27s battery life. In this paper, we present an energy consumption analysis of the localization methods available on modern Android smartphones and propose the addition of an indoor localization mechanism that can be triggered depending on whether a user is detected to be indoors or outdoors. Based on our energy analysis and implementation of our proposed system, we provide experimental results-monitoring battery life over time-and show that an indoor localization method triggered by indoor or outdoor context can improve smartphone battery life and, potentially, location accuracy

    MalFox: Camouflaged Adversarial Malware Example Generation Based on Conv-GANs Against Black-Box Detectors

    Full text link
    Deep learning is a thriving field currently stuffed with many practical applications and active research topics. It allows computers to learn from experience and to understand the world in terms of a hierarchy of concepts, with each being defined through its relations to simpler concepts. Relying on the strong capabilities of deep learning, we propose a convolutional generative adversarial network-based (Conv-GAN) framework titled MalFox, targeting adversarial malware example generation against third-party black-box malware detectors. Motivated by the rival game between malware authors and malware detectors, MalFox adopts a confrontational approach to produce perturbation paths, with each formed by up to three methods (namely Obfusmal, Stealmal, and Hollowmal) to generate adversarial malware examples. To demonstrate the effectiveness of MalFox, we collect a large dataset consisting of both malware and benignware programs, and investigate the performance of MalFox in terms of accuracy, detection rate, and evasive rate of the generated adversarial malware examples. Our evaluation indicates that the accuracy can be as high as 99.0% which significantly outperforms the other 12 well-known learning models. Furthermore, the detection rate is dramatically decreased by 56.8% on average, and the average evasive rate is noticeably improved by up to 56.2%

    De-anonymyzing scale-free social networks by using spectrum partitioning method

    Get PDF
    Social network data is widely shared, forwarded and published to third parties, which led to the risks of privacy disclosure. Even thought the network provider always perturbs the data before publishing it, attackers can still recover anonymous data according to the collected auxiliary information. In this paper, we transform the problem of de-anonymization into node matching problem in graph, and the de-anonymization method can reduce the number of nodes to be matched at each time. In addition, we use spectrum partitioning method to divide the social graph into disjoint subgraphs, and it can effectively be applied to large-scale social networks and executed in parallel by using multiple processors. Through the analysis of the influence of power-law distribution on de-anonymization, we synthetically consider the structural and personal information of users which made the feature information of the user more practical

    A rapid and robust method for shot boundary detection and classification in uncompressed MPEG video sequences

    Get PDF
    Abstract Shot boundary and classification is the first and most important step for further analysis of video content. Shot transitions include abrupt changes and gradual changes. A rapid and robust method for shot boundary detection and classification in MPEG compressed sequences is proposed in this paper. We firstly only decode I frames partly in video sequences to generate DC images and then calculate the difference values of histogram of these DC images in order to detect roughly the shot boundary. Then, for abrupt change detection, shot boundary is precisely located by movement information of B frames. Shot gradual change is located by difference values of successive N I frames and classified by the alteration of the number of intra coding macroblocks (MBs) in P frames. All features such as the number of MBs in frames are extracted from uncompressed video sequences. Experiments have been done on the standard TRECVid video database and others to reveal the performance of the proposed method
    • …
    corecore